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Abstract 

The uncanny valley hypothesis suggests that robots that closely resemble humans elicit feelings 

of eeriness. We focused on individual differences in the uncanny valley experience, which have 

been largely neglected to date. Using a mixed effects modelling approach, we tested whether 

individual differences in the need for structure predict uncanny valley sensitivity. Two 

experiments (Ns = 226 and 336) with morphed stimuli confirmed the uncanny valley effect. A 

moderator effect of need for structure was found in Experiment 2, which used a fine-grained 

manipulation of human likeness, but not in Experiment 1, which used a 3-step manipulation. The 

results provide tentative evidence that individuals who respond negatively to a lack of structure 

show a more pronounced (“deeper”) uncanny valley effect. 
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The Topography of the Uncanny Valley and Individuals’ Need for Structure:  

A Nonlinear Mixed Effects Analysis 

Humanlike machines are a steady feature in works of fiction, ranging from the female 

automat Olympia in Hoffman’s early 19th century story The Sandman to the replicants in the 

movie Blade Runner (Scott, 1982) and the synthetic men and women in the TV series Humans 

(Channel 4 / AMC) or Westworld (HBO). In recent years, humanoid robots have begun to leave 

the fictional world and enter real life. The production of robots is on the rise (International 

Federation of Robotics, 2015) with the introduction of robots that are meant to operate in 

people’s everyday surroundings, do household chores, assist the elderly, or serve as a companion 

(e.g., Gates, 2007; Hurst, 2014; Wingfield, 2015). In recent years, roboticists have created robots 

with physical attributes that resemble humans. Such attributes are meant to facilitate the robots’ 

performance in human environments (e.g., Hirai, Hirose, Haikawa, & Takenaka, 1998) and ease 

humans’ interactions with the robots (e.g., MacDorman & Ishiguro, 2006). However, users’ 

reactions to these robots have not always been positive. This new generation of robots has at 

times elicited strong reactions of discomfort and repulsion (“This thing is what nightmares get 

nightmares from,” user comment in response to the video of a Japanese communications android 

uploaded to YouTube; cf. Mara, 2014). 

Feelings of discomfort in response to humanlike robots have been examined within the 

framework of the uncanny valley hypothesis, which has attracted the widespread attention of 

scholars as well as journalists and the general public (e.g., Azarian, 2015; Eveleth, 2013; Jonette, 

2016; Meth, 2014). The uncanny valley hypothesis (Mori, 1970 / Mori, MacDorman, & Kageki, 

2012) suggests that the acceptance of a robot (or an artifact more generally) increases as the 

extent to which it resembles a human increases until a certain point of human likeness is reached. 

At this point, acceptance drops, and the robot is perceived to be maximally eerie. With even 
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greater human likeness, the eeriness is reduced, and the robot is evaluated more positively. The 

segment of the theoretical human likeness continuum where eeriness dominates is called the 

uncanny valley. Despite the popularity of the concept in psychology and robotics, there is still a 

debate about whether this phenomenon exists at all (for an overview, see Wang, Lilienfeld, & 

Rochat, 2015). Our research extends the current literature in several ways: We examined users’ 

eeriness responses not only as a function of robotic stimuli but as a function of robotic stimuli 

and users’ individual differences. Theory suggests that individual differences in the preference 

for simple cognitive structures (need for structure; Neuberg & Newsom, 1993) predict the shape 

of the negative responses that represent the uncanny valley. Our analyses were based on a mixed 

effects approach (Judd, Westfall, & Kenny, 2012), which enabled us not only to add information 

about more or less susceptible individuals but also to increase the precision with which the 

effects of the experimental treatment could be estimated (Judd et al., 2012). As the uncanny 

valley hypothesis suggests a nonlinear relationship between human likeness and eeriness, linear 

as well as nonlinear relationships were examined. 

1.1 Humanoid Robots and the Uncanny Valley 

The uncanny valley hypothesis was first introduced in an exclusively theoretical essay by 

the Japanese robot scientist Masahiro Mori in 1970 (Mori, 1970 / Mori et al., 2012). Mori 

postulated a nonlinear relationship between the human likeness of an artificial entity (e.g., robots, 

prosthetic hands, puppets, zombies) and emotional reactions to this object. Mori suggested that as 

the human likeness of an object increases, users’ perceptions of the robot become more positive. 

At a point of high—but not perfect—human likeness, people’s affinity for the entity will drop 

and give way to an uncanny, eerie feeling. When the human likeness of this robot increases to a 

point where the robot is indistinguishable from a human being, the eeriness will disappear and 

positive emotions will dominate again (see Figure 1). The steep dip into eeriness is known as the 
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“uncanny valley” (Mori also hypothesized that the shape of the graph changes, and the extrema 

are amplified when the object is moving, e.g., when a prosthetic hand starts moving, but see 

Piwek, McKay, & Pollick, 2014, who found no support for this prediction). 

In the last decade in which the development of humanoid robots has gained momentum, 

researchers’ interest in the uncanny valley hypothesis has increased remarkably (cf. Kätsyri, 

Förger, Mäkäräinen, & Takala, 2015; Wang et al., 2015). In one of the now classic early studies 

on the uncanny valley, MacDorman and Ishiguru (2006) presented images of a mechanical 

looking humanoid, a human, and a series of morphed images that blended the robot and the 

human to varying degrees. They observed an increase in eeriness for the morphed images, which 

appeared to be consistent with the uncanny valley hypothesis (no statistical test for linear or 

curvilinear relationships was conducted). However, in the years that followed, several studies 

failed to detect a relationship that resembled the uncanny valley (Bartneck, Kanda, Ishiguro, & 

Hagita, 2007; Hanson, 2005; MacDorman, 2006; Poliakoff, Beach, Best, Howard, & Gowen, 

2013; Seyama & Nagayama, 2007, cf. Kätsyri et al., 2015; Wang et al., 2015).  

Some of these rather inconclusive results may be due to disagreements about how to 

operationalize the uncanny valley hypothesis. Many studies followed a morphing paradigm, but 

the stimuli used in the morphing process varied, including robots, androids (i.e., robots that are 

intended to mimic human beings as realistically as possible), and real humans (MacDorman & 

Ishiguro, 2006), dolls and real humans (Seyama & Nagayama, 2007), computer-generated avatars 

and real humans (Cheetham, Suter, & Jäncke, 2011), or only computer-generated faces (Burleigh, 

Schoenherr, & Lacroix, 2013.). Often the main dependent variable directly addressed feelings of 

eeriness (e.g., Burleigh et al., 2013; MacDorman, Green, Ho, & Koch, 2009; Wang, 2014), but 

other research focused on familiarity (Hanson, 2005, 2006; Tinwell, Grimshaw, & Williams, 

2010), likeability (Bartneck et al., 2007; Yamada, Kawabe, & Ihaya, 2013), or pleasantness 
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(Seyama & Nagayama, 2007). The analyses typically lacked inferential statistics, and more 

specifically, (multilevel) polynomial regression techniques were rarely applied to test the 

nonlinearity assumption. It is important to note that variations between participants had rarely 

been taken into account. Individual differences are not only a theoretically and practically 

important source of variance (e.g., the question of which users are particularly sensitive to the 

uncanny valley phenomenon), but ignoring variations in participants’ responses for a given 

stimulus can lead to biased estimates of the stimulus effects (Judd et al., 2012, see more below).  

In one of the few studies that discussed individual differences, Moore (2012) proposed a 

specific weighting factor that reflected the sensitivity of an observer to any perceived perceptual 

conflict in his Bayesian model. However, he did not specify what this weighting factor could be. 

MacDorman and Entezari (2015) connected several possible constructs (perfectionism, 

neuroticism, anxiety, personal distress, animal reminder sensitivity, human-robot uniqueness, 

android-robot uniqueness, negative attitudes towards robots, and religious fundamentalism) to 

eeriness and warmth ratings in response to humanlike robots (androids with nonhuman features). 

They found positive relationships between all of the individual difference variables and eeriness 

(except for android-robot uniqueness), but it remained unclear how specific these relationships 

were to the stimuli that were reported on—that is, whether a human, a less humanlike robot, or 

both would yield similar relationships. 

1.2 Explaining the Uncanny Valley Experience 

Theoretical accounts backing the uncanny valley hypothesis date back to German 

psychologist Ernst Jentsch (1906/1997) who discussed uncanny sensations in response to 

humanlike (pseudo-) automata (e.g., the original mechanical Turk and examples from fiction). 

Jentsch suggested that the uncanny (das Unheimliche) might be caused by uncertainty about 

which category the entity belongs to, and that such uncertainty in turn might elicit a lack of 
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orientation and a feeling of estrangement (Jentsch, 1906/1997, p. 217). Some empirical evidence 

has indicated that category uncertainty might indeed be a plausible mechanism for the uncanny 

valley hypothesis. Researchers identified a negative correlation between reaction times in a 

categorization task and the likeability ratings of artificial agents (Yamada et al., 2013). This 

relationship was found for both the avatar-to-human continuum and the avatar-to-dog continuum, 

but no such effect was found for mergers within the “human” category (i.e., stepwise visual 

transitions from one person’s photo portrayal into another person’s portrayal). As part of a recent 

series of studies, individuals were asked to rate the mechanical or human resemblance of a face 

(Mathur & Reichling, 2016). The time taken to make this judgment was greatest for faces that 

exhibited low likeability (but rating time did not serve as a statistical mediator). 

A second theoretical account focuses on expectancy violation and human prediction 

errors. Several scholars have suggested that when a robot has a very humanlike appearance, it 

will activate a human schema. Due to its imperfections, however, the robot will eventually fail to 

measure up to these expectations. When the predictions that come along with the activation of the 

human model are violated, the artificial agent is then regarded as uncanny (MacDorman, 2006; 

Matsui, Minato, MacDorman, & Ishiguro, 2005; Mitchell, Szerszen, Lu, Schermerhorn, Scheutz, 

& MacDorman, 2011; Saygin, Chaminade, Ishiguro, Driver, & Frith, 2012; Steckenfinger & 

Ghazanfar, 2009). MacDorman and Chattopadhyay (2016) showed morphs between 

photographed faces and computer-generated faces and found support for the role of realism 

inconsistency which is assumed to evoke prediction errors, which in turn lead to aversive 

responses (however, they found no evidence for category uncertainty).  

Gray and Wegner (2012) specified the incompatibility that leads to eerie feelings. On the 

basis of a general theory of mind perception (Gray, Gray, & Wegner, 2007), they found that 

robots that are associated with experience (i.e., the capacity to feel and to sense) elicit uncanny 
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feelings. Agency (i.e., the capacity to engage in planned action and to exert self-control) was 

unrelated to feelings of eeriness, because unlike experience, agency fits the established mental 

model of robots.   

1.3 Individual Differences in the Need for Structure and the Uncanny Valley 

The approaches outlined above rest on the assumption that individuals are inclined to use 

simplified generalizations of previous experiences (e.g., schemata, prototypes, scripts) to process 

incoming information. The creation and use of these structures enables humans to interpret the 

world on the basis of limited cognitive resources. Although all healthy humans rely on these 

structures, there are meaningful differences in the extent to which individuals “are dispositionally 

motivated to cognitively structure their worlds in simple, unambiguous ways” (Neuberg & 

Newsom, 1993, p.114). Neuberg and Newsom’s personal need for structure (PNS) is closely 

related to constructs such as intolerance of ambiguity (Frenkel-Brunswik, 1949) or the need for 

closure (Kruglanski, Webster, & Klem, 1993). People with a high need for structure are supposed 

to create relatively homogeneous, well-bounded, and distinct cognitive structures, they perceive 

ambiguity and grey areas to be problematic and annoying, and they are expected to experience 

discomfort when structure and clarity appear to be missing (Thompson, Naccarato, Parker, & 

Moskowitz, 2001). A self-report scale is available to assess individual differences in PNS 

(Newson & Neuberg, 1993), which consists of two subdimensions, representing the desire to live 

a well-structured life (desire for structure; DFS) and the negative response to unstructured, 

unpredictable stimuli and situations (response to lack of structure; RLS).  

People with higher levels of PNS were found to be more likely to use less complex 

representations in their trait-based representations of the elderly, to apply previously acquired 

social categories to new situations, and to use simpler ways of organizing social and nonsocial 

information (Neuberg & Newsom, 1993). Moreover, people high on PNS were more likely to 
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form spontaneous trait inferences—one way to impose structure in social actions (Moskowitz, 

1993). Furthermore, studies have shown that high PNS individuals have a greater tendency to 

develop and rely on stereotypes (as another form of simple cognitive structure) in ambiguous 

situations (Bar-Tal & Guinote, 2002; Clow & Esses, 2005; Neuberg & Newsom, 1993). 

Individuals high on PNS were found to be more cognitively rigid (less creative) when confronted 

with schema-inconsistent stimuli (Gocłowska, Baas, Crisp, & De Dreu, 2014), and they showed 

intense negative responses to meaning threats (Landau et al., 2004; McGregor, Haji, & Kang, 

2008; cf. Heine, Proulx, & Vohs, 2006). 

The available research on the two subdimensions has suggested qualitative differences. 

The RLS factor was associated with both trait and social anxiety (whereas the DFS factor was 

not; Neuberg & Newsom, 1993) and DFS, but not RLS, was related to conscientiousness. More 

recent research has suggested that DFS is associated with sensitivity to the positive emotional 

qualities of stimuli, whereas RLS is associated with sensitivity to the negative emotional qualities 

of stimuli (Cavazos, Judice-Campbell, & Ditzfeld, 2012). In sum, individuals high on PNS tend 

to create and use simple, well-bounded, and distinct cognitive structures, they react particularly 

aversively to a lack of structure and clarity (Thompson et al., 2001), and their responses are more 

negative when they feel that structure is threatened (Cavazos et al., 2012), with the subdimension 

RLS showing particularly strong relationships with negative responses whenever structure is 

disrupted.  

We assume that encountering a humanlike robot constitutes a situation in which expected 

generalizations of previous experiences (e.g., schemata) do not provide sufficient orientation. 

This should be particularly troubling for individuals who are dispositionally inclined to rely on 

these generalizations, that is, individuals high on PNS and particularly those with strong 

responses to a lack of structure (RLS). Thus, we expected that the shape of the uncanny valley 
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would systematically vary with individuals’ RLS, with a deeper valley for individuals high on 

RLS and a less deep valley for individuals low on RLS.  

1.4 The Uncanny Valley as a Function of Stimulus and User: The Mixed Effects Approach 

To analyze the general phenomenon of the uncanny valley, the common procedure in 

previous research was to compute the mean of the relevant variables (e.g., eeriness, subjective 

human likeness) for each stimulus, averaging across all participants (e.g., Burleigh et.al, 2013; 

MacDorman et al, 2009; MacDorman & Ishiguro, 2006). This procedure corresponds with what 

Judd and colleagues (2012) call a by-stimulus analysis. This procedure treats stimuli as random 

but ignores random effects due to participants (i.e., systematic variation between persons). As 

Judd et al. (2012) demonstrated, a by-stimulus analysis will yield positively biased significance 

tests (alpha inflation) for the effect of an independent variable if in fact participants are random 

(i.e., differ systematically).  

To analyze individual differences in uncanny valley sensitivity, the only existing study 

directly related to our research (MacDorman & Entezari, 2015) computed a mean on eeriness for 

each participant, averaging across all stimuli. In the next step, eeriness was predicted by an 

individual difference construct of interest (e.g., neuroticism). This corresponds to a by-participant 

analysis, which treats participants as random but ignores random effects due to stimuli. If 

systematic variation between stimuli exists, a by-participant analysis will also yield biased 

significance tests (Judd et al., 2012). 

To avoid collapsing across either stimuli or participants, multilevel modelling (e.g., 

Raudenbush & Bryk, 2002; Snijders & Bosker, 2012) can be applied to repeated-measures data 

(i.e., judgments nested in individuals). When a study uses a small number of different (fixed) 

stimuli, systematic variation between stimuli can be accounted for by including indicator 

variables for the different stimuli on the judgments level. When a study uses a larger set of 
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stimuli, and these stimuli are sampled from some population of stimuli to which the researchers 

would like to make inferences, participants and stimuli are both random factors. If all participants 

are exposed to the same set of stimuli, the two random factors are fully crossed with each other. 

To account for systematic variation between stimuli in these repeated-measures designs, 

multilevel models with crossed random effects (e.g., Raudenbush & Bryk, 2002; Snijders & 

Bosker, 2012) can be applied to the data. Models with crossed random effects are typically called 

mixed effects models (e.g., West, Welch, & Gałecki, 2015). In recent years, different authors 

(Baayen, Davidson, & Bates, 2008; Judd et al., 2012) have called for an increase in the 

implementation of these models in experimental and social psychology. As Judd et al. (2012) 

argued, besides providing unbiased significance tests, “a pronounced benefit [of using a mixed 

models approach] is that one can obtain estimates of the various variance components, and these 

may lead in turn to new insights about factors that might be responsible for unexplained variance 

in data, either associated with stimuli or participants” (p. 65). In our view, there are at least three 

reasons why research on the uncanny valley phenomenon in particular might profit from applying 

a mixed effects approach: First, the relationship between human likeness and eeriness can be 

scrutinized without having to collapse the ratings across participants, and individual differences 

in uncanny valley sensitivity can be scrutinized without having to collapse the ratings across 

stimuli. Second, mixed effects models allow researchers to test for not only whether individuals 

differ in the average level of eeriness that is experienced but also whether individuals differ in the 

functional form of the relationship between human likeness and eeriness (e.g., in the size of the 

“drop” in eeriness in the middle of the human likeness continuum). Third, person-level variables 

can be entered simultaneously into the models to predict individual differences in the uncanny 

valley experience. 
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We conducted two experiments that followed the mixed effects rationale. This allowed us 

to examine whether the relationship between robots’ human likeness and respondents’ feelings of 

eeriness followed the pattern suggested by the uncanny valley hypothesis. In Experiment 1, we 

analyzed eeriness for three human likeness conditions (robot vs. android vs. human) using a small 

set of different stimuli for each category. We applied a fixed approach to model (potential) 

systematic differences between stimulus sets in a multivariate multilevel model (with judgments 

on Level 1 and participants on Level 2). In Experiment 2, we used a larger number of stimuli to 

represent the human likeness continuum between robots and humans, which allowed us to test for 

a nonlinear relationship between human likeness and eeriness by applying a polynomial mixed 

effects model. In both experiments, our focus was on individual differences in the uncanny valley 

experience. We tested the hypothesis that individuals’ need for structure, particularly in the 

response to lack of structure (RLS) subdimension, would moderate the relationship between 

human likeness and eeriness responses. Given that RLS, but not DFS, was related to extraversion 

and neuroticism in previous research (Neuberg & Newsom, 1993), we additionally assessed the 

two personality traits in Experiment 1 to examine whether the PNS subdimensions’ discriminant 

validity could be confirmed. Moreover, we wanted to test whether the proposed prediction of 

individual differences in the uncanny valley experience would hold when extraversion and 

neuroticism (as general susceptibility to positive and negative affectivity) are controlled for (cf. 

Cavazos et al., 2012).  

2. Experiment 1 

2.1 Method 

2.1.1 Participants.  

A total of 331 participants were recruited via social media networks and several university 

mailing lists in Germany to participate in an online survey on the evaluation of robots. Fifty-
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seven participants terminated their participation during the task. To identify careless responding 

(Meade & Craig, 2012), we analyzed completion time and answers to an instructed-response item 

(“Please respond with totally disagree for this item”). The average completion time was 12.74 

min, and 95% of persons spent less than 24.32 min on the survey. The data of 14 participants 

who took longer than this threshold were excluded from the analyses. At the lower end of the 

completion time distribution, we excluded the data of the 2.5% fastest participants who 

completed the survey in less than 4.72 min (n = 7). The data of 22 participants who had not 

answered the instructed-response item correctly were excluded from the analyses. In addition, we 

excluded a participant’s data if the participant did not rate the three stimuli on at least two (out of 

three) eeriness items (n = 4) or if the participant did not complete the PNS, extraversion, and 

neuroticism items (n = 1). Therefore, the final sample consisted of 226 participants (117 students; 

156 women; age range = 15−79, M = 32.00, SD = 13.95).  

2.1.2 Stimuli.  

Our stimulus pool consisted of three images of robots, three images of humans, and three 

morphed images (see Figure 2). The depicted robots were selected by their humanoid appearance 

to make the morphing process easier and to prevent morphing artifacts (i.e., irregularities in the 

images from the morphing process). Only the faces of the robots and the humans (i.e., not their 

bodies) were used in the morphing process to make the image composition between human and 

robot images as similar as possible. The robot images showed the robots called Aila (DFKI 

Robotics Innovation Center), Bandit (USC Interaction Lab and BlueSky Robotics), or Roboy (AI 

Lab, University of Zurich), taken from the IEEE robot collection (Institute of Electrical and 

Electronic Engineers, 2012). Two images of humans were selected from the Karolinska Directed 

Emotional Faces database (Lundqvist, Flykt, & Öhman, 1998; image IDs AM10NES, 

BM09NES), and a third image was retrieved via a Google Image search. The images showed the 
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front view of a human face with a direct gaze and a neutral expression. Human and robot images 

were paired according to facial and feature similarities (e.g., hair, head form, and gender) to 

simplify the morphing process. After the morphing process, the images were changed to black-

and-white, and the contrast was reduced to minimize the morphing artifacts. The image pairs 

were used as parent faces (i.e., continua endpoints) in the morphing process to produce three 

stimulus sets. The morphed image we chose for the android category was the image that 

represented an appearance that was approximately 50% human and 50% robot. 

2.1.3 Procedure.  

Our experiment was conducted online. First, participants completed the personality 

measures. Next, we presented the experimental stimuli along with the eeriness and human 

likeness items (see 2.1.4). Each participant rated three out of the nine images. In 

counterbalancing the human likeness condition (robot, android, human) and stimulus set, we 

made sure that each participant rated exactly one robot, one android, and one human and that 

each image was taken from a different stimulus set. With this procedure, we aimed to reduce 

potential carry-over effects that occur when individuals rate several images of the same stimulus 

set. All potential combinations were represented in six different stimulus series, and participants 

were randomly assigned to one of the series. The presentation order of the three stimuli was 

determined randomly for each participant. A total of 678 (226 participants x 3 stimuli) eeriness 

judgments were included in the present analysis. After the stimuli and dependent measures were 

administered, questions about demographics and media use (unrelated to the current research) 

followed. Participants were subsequently thanked and debriefed.    
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2.1.4 Measures.  

Eeriness. Eeriness was measured with three items on a 7-point semantic differential scale. 

The items and format were adapted from Ho and MacDorman’s (2010) eeriness-eerie index (1 = 

beruhigend [reassuring] to 7 = furchterregend [eerie]; 1 = behaglich [bland] to 7 = unheimlich 

[uncanny]; 1 = gruselig [creepy] to 7 = nicht gruselig [not creepy] [recoded]). The three items 

were averaged to form an indicator of eeriness. To estimate the reliability of the three-item 

eeriness measure, we calculated alpha at the within-persons level (level of judgments) and at the 

between-persons level. We calculated a within-persons-level alpha in Mplus (Muthén & Muthén, 

2012) with the method presented by Geldhof, Preacher, and Zyphur (2014); it was .92. On the 

between-persons level, we calculated Cronbach’s alpha separately for each of the nine stimuli1, 

which ranged from .70 to .89 (Mdn = .84). To make the meaning of the eeriness indicator 

compatible with the y-axis representing “comfort” in Mori’s (1970) conceptualization of the 

uncanny valley (where low values indicated a negative response and high values indicated a 

positive response to the stimulus), we reversed the eeriness indicator by multiplying its values by 

−1. Thus, the transformed eeriness indicator had a possible range from −7 = very eerie to −1 = 

not at all eerie. The negative value range offered the advantage that larger absolute scores 

represented more eeriness (which is intuitively meaningful), but at the same time, a graphical 

depiction of eeriness on the y-axis was in line with the conceptualization of an uncanny valley 

(and not an “uncanny mountain”). 

Subjective human likeness. Participants rated the human likeness of each stimulus with 

four items on a 7-point semantic differential scale. The items and format were adapted from Ho 

and MacDorman’s (2010) human likeness scale (1 = künstlich [artificial] to 7 = natürlich 

[natural]; 1 = synthetisch [synthetic] to 7/echt [real]; 1 = unbelebt [inanimate] to 7 = lebendig 

[living]; 1 = unmenschlich [non-humanlike] to 7 = menschlich [humanlike]). The four items were 
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averaged to form an indicator of subjective human likeness. The within-persons-level alpha 

(Geldhof et al., 2014) was .94. On the between-persons level, we calculated Cronbach’s alpha 

separately for each of the nine stimuli1, which ranged from .56 to .87 (Mdn = .84). 

Personal need for structure (PNS). Participants completed the 11-item Personal Need for 

Structure scale (Neuberg & Newsom, 1993; German version by Machunsky & Meiser, 2006). 

The subscale Desire for Structure (DFS) consisted of four items (e.g., “I enjoy having a clear and 

structured way of life”), and the subscale Response to Lack of Structure (RLS) consisted of seven 

items (e.g., “I don’t like situations that are uncertain”). The response format was a 6-point Likert 

scale (1 = strongly disagree to 6 = strongly agree). Cronbach’s alpha was .73 for DFS and .74 for 

RLS. For the PNS total scale, Cronbach’s alpha was .80. 

Extraversion and Neuroticism. Extraversion and Neuroticism were assessed as control 

variables with the Big Five Inventory (John & Srivastava, 1999; German version by Lang, 

Lüdtke, & Asendorpf, 2001). The scales consisted of eight (Extraversion) and seven 

(Neuroticism) items and were rated on a 6-point Likert scale (1 = strongly disagree to 6 = 

strongly agree). Cronbach’s alpha was .85 for Extraversion and .79 for Neuroticism.  

2.1.5 Methods of data analysis.  

Our data set included a small number of judgments (three eeriness ratings) per 

participant—one rating for each of the three human likeness conditions (robot, android, human). 

We applied a multivariate multilevel modelling approach with judgments on Level 1 and 

participants on Level 2. A “standard” multivariate multilevel model for a small number of 

multiple measures (e.g., Snijders & Bosker, 2012) contains as many indicator variables as there 

are repeated measures. We used this “standard” multivariate model with three dummy variables 

(one for each judgment) as a baseline model: 
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Model 0: 

Level 1 (judgments): 
. . .ti i ti i ti i tiEerie Dummy Robot Dummy Android Dummy Humanβ β β= × + × + ×

1 2 3
   (0.1) 

Level 2 (participants): 
1 10 1

β γ= +i iu        (0.2) 

 
2 20 2

β γ= +i iu        (0.3) 

 
i iuβ γ= +

3 30 3
       (0.4) 

On Level 1, there is no intercept term so that the varying regression coefficients for the dummy 

variables (β1i, β2i, and β3i) represent participants’ ratings of the three stimuli. Note that the Level-

1 equation does not contain a residual term. The reason for this is that participants gave only one 

rating per type of stimulus. That is, this level serves only as a tool for representing three measures 

per participant—the dummy variables indicate whether the data line refers to the rating of the 

android, the robot, or the human stimulus. On Level 2, the fixed effects γ10, γ20, and γ30 (eeriness 

means across participants) are estimated. The variances of the residuals (u1i, u2i, and u3i) represent 

individual differences in eeriness ratings of the robot, android, and human stimulus, respectively. 

To test whether an uncanny valley effect emerged, the model can be slightly changed to include 

an intercept term and two dummy variables which contrast the eeriness mean for the android 

stimuli with the eeriness means for the robot and human stimuli, respectively: 

Model 1: 

Level 1 (judgments):  . .
0 1 2

β β β= + × + ×ti i i ti i tiEerie Dummy Robot Dummy Human  (1.1) 

Level 2 (participants):  
0 00 0

β γ= +i iu        (1.2) 

 
1 10 1

β γ= +i iu        (1.3) 

 
2 20 2

β γ= +i iu        (1.4) 

In this model, the varying intercept term β0i represents participant i’s eeriness rating of the 

android stimulus (reference category), the varying slope term β1i represents the difference 

between participant i’s eeriness rating of the robot stimulus and participant i’s eeriness rating of 

the android stimulus, and the varying slope term β2i represents the difference between participant 
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i’s eeriness rating of the human stimulus and participant i’s eeriness rating of the android 

stimulus. On Level 2, the fixed effects γ00 (mean eeriness rating of an android stimulus across 

participants), γ10 (mean difference in eeriness ratings of a robot vs. an android stimulus across 

participants), and γ20 (mean difference in eeriness ratings of a human vs. an android stimulus 

across participants) are estimated. If we substitute the Level-2 equations into the Level-1 

equation, we obtain the following mixed model equation: 

( ) . ( ) .ti i i ti i tiEerie u u Dummy Robot u Dummy Humanγ γ γ= + + + × + + ×
00 0 10 1 20 2

  (2) 

Due to the small number of selected stimulus sets in this study (three, see Figure 2), we used a 

fixed effects approach (instead of a random effects approach) to account for possible systematic 

differences between stimulus sets. To leave the meaning of the intercept, robot slope, and human 

slope coefficients unchanged (i.e., as described above), we added unweighted effect-coded 

indicator variables for the stimulus sets (and their interaction terms with the robot and human 

dummy variables) as Level-1 predictors. This yielded the following mixed model equation: 

Model 2: 

( ) . ( ) .

. 2 . 3

. . 2 . . 3

. . 2

ti i i ti i ti

ti ti

ti ti ti ti

ti ti

Eerie u u Dummy Robot u Dummy Human

Effect Set Effect Set

Dummy Robot Effect Set Dummy Robot Effect Set

Dummy Human Effect Set

γ γ γ

γ γ

γ γ

γ γ

= + + + × + + ×

+ × + ×

+ × × + × ×

+ × × + ×

00 0 10 1 20 2

30 40

50 60

70 80
. . 3

ti ti
Dummy Human Effect Set×

 (3) 

To test whether the two PNS subscales, RLS and DFS, moderated the uncanny valley 

experience, we included both PNS subscales (centered at the grand mean) as Level-2 predictors 

of the intercept term, the robot slope term, and the human slope term. The mixed model equation 

(with an abbreviation for fixed effects due to stimulus sets) is: 
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Model 3: 

( ) . ( ) .

[+ fixed effects for stimulus sets]

. .

. .

ti i i ti i ti

i i

ti i ti i

ti i

Eerie u u Dummy Robot u Dummy Human

RLS DFS

Dummy Robot RLS Dummy Robot DFS

Dummy Human RLS Dummy Huma

γ γ γ

γ γ

γ γ

γ γ

= + + + × + + ×

+ × + ×

+ × × + × ×

+ × × + ×

00 0 10 1 20 2

01 02

11 12

21 22 ti i
n DFS×

  (4) 

where γ01 and γ02 represent the main effects of the PNS subscales (i.e., the expected increase in 

eeriness evoked by an android stimulus for a one-unit increase in the PNS subscale, holding the 

other PNS subscale constant). The fixed effects γ11 and γ21 represent moderator effects of the RLS 

subscale (i.e., the expected change in the eeriness difference score [for the robot-android or 

human-android comparison, respectively] for a one-unit increase in RLS, holding DFS constant). 

The fixed effects γ12 and γ22 represent the corresponding moderator effects of the DFS subscale. 

To test whether the results would hold when Extraversion and Neuroticism were controlled for, 

we additionally added (grand-mean centered) Extraversion and Neuroticism to Equation 4 as 

person-level predictors of the varying intercepts and the varying slope coefficients. 

We analyzed the data with Mplus (Version 7; Muthén & Muthén, 2012). Mplus allowed 

us to set the Level-1 variance to zero, which is necessary when specifying a multivariate 

multilevel model (see e.g., Snijders & Bosker, 2012).  

2.2 Results 

2.2.1 Manipulation check and descriptive analyses. 

Descriptive statistics for the variables can be found in Table 1. As a manipulation check, 

we analyzed the differences in the subjective human likeness ratings of the robot, android, and 

human stimuli by using a multivariate multilevel model (cf. Equation 3). That is, dummy 

variables for the human likeness condition and stimulus set were entered as predictors. The only 

difference from the model described in Equation 3 was that subjective human likeness (instead of 
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eeriness) was the dependent variable. The results revealed that, as expected, the human stimuli 

received the highest ratings (5.91), followed by the android stimuli (2.74) and the robot stimuli 

(1.73). Both the android–robot comparison (z = −12.22, p < .001) and the android–human 

comparison (z = 34.82, p < .001) were significant. The mean human likeness rating of the android 

stimulus from Stimulus Set 3 (see Figure 2) was higher (by 0.37 points) than the human likeness 

ratings of the android stimuli on average (z = 3.39, p < .01). None of the interactions between 

human likeness condition and stimulus sets were significant (all |zs| < 1.86, p > .06).  

To provide a descriptive overview of the central tendency and the variability in eeriness 

ratings, Figure 3a depicts the mean eeriness ratings across participants for the three stimulus sets, 

and Figure 3b depicts boxplots for participants’ eeriness ratings as a function of human likeness. 

On a descriptive level, the android stimuli evoked the highest eeriness. As can be seen in Figure 

3a, stimulus sets differed somewhat in the eeriness they evoked. As can be seen in Figure 3b, 

there were relatively large individual differences in eeriness ratings within human likeness 

conditions. Estimates of the mean eeriness ratings for each human likeness condition and for the 

degree of individual differences in these ratings (i.e., SDs) were obtained from a baseline 

multivariate multilevel model. These estimates are depicted in Table 2 (Model 0). 

Correlations between the personality variables can be found in Table 3. The PNS 

subscales were highly positively correlated (r = .48). However, only the RLS subscale, but not 

the DFS subscale, was significantly related to Extraversion and Neuroticism (inverse correlations 

of moderate size). This suggests that the scales overlap but are not redundant. This is in line with 

the results of Cavazos et al. (2012), who found that RLS (but not DFS) was significantly positively 

related to negative trait affectivity and significantly negatively related to positive trait affectivity.  
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2.2.2 Effect of manipulated human likeness on eeriness. 

The results of the multivariate multilevel model that allowed us to test whether the mean 

eeriness levels for the android versus the robot stimuli and the android versus the human stimuli 

differed significantly are summarized in Table 2 (Model 1). The eeriness evoked by an android 

stimulus (−5.51 [γ00]) was significantly stronger (larger negative value) than the eeriness evoked 

by a robot stimulus (−5.51 [γ00] + 1.51 [γ10] = −4.00) and the eeriness evoked by a human 

stimulus (−5.51 [γ00] + 2.68 [γ20] = −2.83). Model 2 additionally included effect-coded indicator 

variables for the stimulus sets to test for differences between the stimulus sets: An android 

stimulus from Set 2 (see Figure 2) was rated as more eerie (by 0.29 points [γ30]), and an android 

stimulus from Set 3 (see Figure 2) was rated as less eerie (by 0.30 points [γ40]) compared with the 

grand mean of eeriness for an android stimulus. Moreover, the android–robot difference was larger 

for Stimulus Sets 2 and 3 than on average (i.e., for Set 2, the android–robot difference was 1.46 

[γ10] + 0.53 [γ50] = 1.99; for Set 3, the android–robot difference was 1.46 [γ10] + 0.40 [γ60] = 

1.86), and the android–human difference was smaller for Stimulus Set 3 than on average (i.e., for 

Set 3, the android–human difference was 2.65 [γ20] − 0.86 [γ80] = 1.79).  

2.2.3 Moderator effects of Personal Need for Structure subscales. 

Table 2 (Model 3) shows the results for the multivariate multilevel model for predicting 

eeriness with the person-level PNS subscales. The PNS scales did not show main effects on the 

eeriness ratings of the android stimuli (nonsignificant γ01 and γ02) or moderator effects 

(nonsignificant γ11, γ12, γ21, and γ22). When only one of the PNS subscales was added as a Level-2 

predictor at a time (i.e., either RLS or DFS), the results remained the same. That is, individual 

differences in the degree to which android stimuli evoked greater eeriness than robot (or human) 

stimuli could not be explained by individual differences in PNS. When we added Extraversion 
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and Neuroticism as person-level predictor variables to the model, the personality variables did 

not show main or moderator effects either, and the regression coefficients for the PNS scales did 

not change (i.e., they remained nonsignificant). When the PNS total scale (instead of the 

subscales) was analyzed as a person-level predictor variable, a similar picture emerged (there 

were no main or moderator effects of the PNS total scale). 

2.3 Discussion 

Adopting a standard procedure in research on the uncanny valley, we asked participants to 

report their eeriness in response to images that varied in human likeness—that is, robots, humans, 

and morphed android images. As expected, we found that morphed android images elicited 

greater eeriness than either robots or humans. This result contributes to the contested question of 

whether or not the uncanny valley exists. Based on elaborate statistical analyses, our findings 

(along with Mathur & Reichlich, 2016) support the uncanny valley hypothesis. The effects of the 

android-human comparison were larger than the effects of the android-robot comparison. This did 

not come as a surprise given that the selected robots already exhibited humanlike characteristics; 

thus, the robot’s human likeness might have already surpassed the peak of highest affinity. We 

expected that individual differences in Response to Lack of Structure (RLS) would predict the 

extent to which the android stimuli would evoke greater eeriness than the robot or human stimuli. 

Our analyses did not yield an overall effect of RLS on the eeriness ratings, and we did not find 

the expected moderator effect. Moreover, no influence of recipients’ Extraversion or Neuroticism 

was found in additional exploratory analyses. A limitation of Experiment 1, however, was that 

the human likeness continuum was represented by three different levels only (robot vs. human vs. 

one morphed android) with the help of three different stimulus sets. By realizing only three levels 

of the (theoretically continuous) human likeness dimension, it was not possible to examine the 

nonlinear effect of more subtle changes in human likeness on eeriness. Thus, we conducted a 
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second experiment with a more fine-grained manipulation of human likeness. Experiment 2 

allowed us to include linear, quadratic, and cubic experimental human likeness terms in the 

analyses as well as terms indicating moderation by the PNS subdimensions.  

3. Experiment 2 

3.1 Method 

3.1.1 Participants.  

A total of 547 participants were recruited via social media networks and several university 

mailing lists in Germany to participate in an online survey on the “evaluation of robots and 

humans.” One hundred ninety-eight participants terminated their participation during the task. 

That is, they rated only a portion of the stimuli and, more important, they did not complete the 

PNS measure, which had been placed at the end of the online survey. In addition, to identify 

careless responding (Meade & Craig, 2012), we analyzed answers to a “Use me” item (“Should 

we include your data in our analyses?”) and completion time. Five participants stated that their 

data should not be used for data analysis. Average completion time was 19.48 min, and 95% of 

the participants spent less than 35.7 min on the survey. Data from 18 participants who took 

longer than this threshold were excluded from the analyses. At the lower end of the completion 

time distribution, we excluded the data of the 3% fastest participants who completed the survey 

in less than 6 min (n = 10). Therefore, the final sample consisted of 316 participants (280 

students; 194 women; age range = 18−59, M = 24.09, SD = 5.15).  

3.1.2 Stimuli. 

The stimulus pool consisted of eight stimulus sets with images of robots, humans, and 

morphed images (see Figure 4, which depicts seven of the eight stimulus sets). Again, robots with 

a humanoid appearance were chosen to facilitate the morphing process and to minimize the 

likelihood of morphing artifacts (i.e., irregularities in the images from the morphing process).  
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As in Experiment 1, the faces of the robots and humans (i.e., not the rest of the body) 

were used in the morphing process. Three of the selected robot images had already been used in 

Experiment 1 (Aila, Bandit, Roboy). The five new robot images showed robots named Flobi 

(University of Bielefeld, Germany), iCub (RoboCub Consortium, Bar Ilan University, Israel), 

RoboThespain (Engineered Arts Ltd, United Kingdom), and Telenoid (Ishiguro Lab at Osaka 

University, Japan), taken from the IEEE robot collection (Institute of Electrical and Electronic 

Engineers, 2012), as well as Roman (Robotics Research Lab, University of Kaiserslautern, 

Germany). The six male, human images were selected from the Karolinska Directed Emotional 

Faces database (Lundqvist et al, 1998; image IDs AM10NES, AM18NES, BM09NES, 

AM30NES, BM25NES, AM31NES), and the two female images were extracted from a Google-

Image search, each with a front view of the face with direct gaze and neutral expression. Human 

and robot images were again paired according to facial and feature similarities (e.g., head form, 

hair, gender) to simplify the morphing process. The image pairs were then used as parent faces 

(i.e., stimulus set endpoints) in the morphing process. Each stimulus set consisted of seven levels 

and was created by increasing the physical human-like appearance and decreasing the physical 

robot appearance in a stepwise fashion in increments of 16.7% (i.e., Level 1: 0% human/100% 

robot, Level 2: 16.7% human/83.3% robot ... to Level 7: 100% human/0% robot). For all images, 

contrast was reduced to minimize artifacts, and the colors were changed to black-and-white. 

3.1.3 Procedure.  

The study was conducted online and began with an introduction and three example 

images (one image of each end of the robot-human morphing continuum and the image in the 

middle of the continuum) so that all participants had the same anchor points for judging human 

likeness. On the next page, an additional example image was presented along with the human 

likeness and eeriness items to familiarize participants with the item format. The second part was 
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the actual survey. For each step of the morphing continuum, each participant was presented with 

four different, randomly selected images. That is, each participant rated 28 images (4 images x 7 

steps of the morphing continuum) on human likeness and eeriness. The 28 images were selected 

randomly out of the 56 existing images (8 different stimulus sets x 7 steps) and were presented in 

a random order for each participant. In the last part of the survey, participants were requested to 

complete the PNS measure and answer demographic questions. On the last page, participants 

were informed about the purpose of the survey and had the opportunity to withdraw their data 

from data analysis.  

3.1.4 Measures.  

Eeriness. Eeriness was measured with two items (unheimlich [uncanny] and gruselig 

[eerie]) taken from Ho and MacDorman’s (2010) eeriness-eerie index. For each image, 

participants rated the degree of eeriness the stimulus evoked on a 7-point intensity scale (e.g., 1 = 

not at all eerie to 7 = very eerie). Given that the number of stimuli to be rated was relatively large 

in this experiment (compared with Experiment 1), we used only two items to measure eeriness to 

reduce participant burden. The two items were averaged to form an indicator of eeriness. To 

estimate reliability, we calculated alpha at the within-persons level (level of judgments) and at the 

between-persons level in Mplus (Muthén & Muthén, 2012) by applying the method presented by 

Geldhof et al. (2014) to our data2. For the two-item measure of eeriness, alpha was .97 on the 

within-persons (judgments) level and .98 on the between-persons level. As in Experiment 1, we 

reversed the eeriness indicator by multiplying its values by −1. Thus, the transformed eeriness 

indicator had a possible range from −7 = very eerie to −1 = not at all eerie.  

Subjective human likeness. For each image, participants rated the stimulus’ degree of 

human likeness on two items (künstlich−natürlich [artificial−lifelike] and 

unmenschlich−menschlich [machinelike−humanlike]) using a 7-point bipolar intensity scale (e.g., 
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1 = very artificial to 7 = very lifelike). The items were taken from the five-item human likeness 

scale used by Ho and MacDorman (2010) and Mara and Appel (2015a, 2015b). Again, we used 

only two items to measure human likeness in order to reduce participant burden. The two items 

were averaged to form an indicator of human likeness. To estimate reliability, we calculated 

alpha at the within-persons level (level of judgments) and at the between-persons level (Geldhof 

et al., 2014). For the two-item measure of human likeness, alpha was .95 on the within-persons 

(judgments) level and .65 at the between-persons level. 

Personal Need for Structure (PNS). We used the same Personal Need for Structure scale 

that was used in Experiment 1. Cronbach’s alpha was .73 for the Desire for Structure subscale, 

.65 for the Response to Lack of Structure subscale, and .77 for the PNS total scale.  

3.1.5 Methods of data analysis.  

In the final sample of 316 participants, a total of 59 responses to individual items (0.1% of 

all responses) were missing. Because this proportion was rather small, we decided to deal with 

missing data at the item level by using the available items as indicators of a stimulus’ human 

likeness or eeriness. For the PNS scale, the available items were averaged to form the scale score. 

In total, 8,846 judgments of images were analyzed in the present analyses. 

Our data set represents repeated-measures data (judgments on Level 1) with participants 

(Level 2a) and stimulus sets (Level 2b) as crossed random effects. Given that for each step of the 

manipulated human likeness continuum, each participant was presented with four randomly 

selected images, not all participants were exposed to all stimulus sets (although the majority 

were: 91% of the participants saw images from all eight stimulus sets). Thus, participants and 

stimulus sets were partially crossed in our design.  
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To test whether a curvilinear relationship between human likeness and eeriness held in 

our data, a mixed model specifying a cubic function for human likeness on Level 1 (i.e., an S-

shaped function with two bends) was used. The mixed model equation is: 

( ) ( ) ( )2 3

00 0 0 10 1 1 20 2 2 30 3 3
γ γ γ γ ε= + + + + + × + + + × + + + × +tij i j i j tij i j tij i j tij tijEerie u v u v HL u v HL u v HL

 (5) 

where Eerietij represents the eeriness ratings t (t = 1, 2, …, 28) for participant i (i = 1, 2, …, 344) 

and stimulus set j (j = 1, 2, …, 8). γ00 is the fixed intercept, u0i is the random effect for the 

intercept associated with participant i, and v0j is the random effect for the intercept associated 

with stimulus set j. The fixed effects γ10, γ20, and γ30 characterize the average relationship 

between human likeness and eeriness (across all participants and all stimulus sets). Depending on 

which of these three fixed effects reaches significance, the relationship between human likeness 

and eeriness follows a linear, a quadratic, or a cubic function. The highest significant polynomial 

term defines the form of the relationship (Cohen, Cohen, West, & Aiken, 2003). Random effects 

for the three human likeness terms were specified across participants (u1i, u2i, and u3i representing 

between-persons differences in the human likeness–eeriness relationship) and across stimulus 

sets (v1i, v2i, and v3i representing between-stimuli differences in the human likeness–eeriness 

relationship), and we tested (via deviance tests) whether these random variance components were 

significantly larger than zero. Only significant random effects were retained in the model (see 

e.g., West et al., 2015). The residual term εtij represents the deviations of eeriness ratings from the 

expected eeriness score for a given person–stimulus set combination. In the first set of models, 

we used manipulated human likeness (steps of the morphing continuum) as the Level-1 predictor 

variable. Manipulated human likeness was centered to facilitate interpretation of the mixed model 

coefficients (thus, it ranged from −3 = robot stimulus to 3 = human stimulus). In a second set of 

models, we used subjectively rated human likeness (instead of manipulated human likeness steps) 



UNCANNY VALLEY 28 

as the Level-1 predictor variable. We centered subjectively rated human likeness at the person 

mean so that pure within-persons relationships would be estimated, and the interpretation of the 

regression coefficients would be facilitated (Enders & Tofighi, 2007). 

To test whether the two PNS subscales, Response to Lack of Structure (RLS) and Desire 

for Structure (DFS), moderated the uncanny valley experience, we included the two person-level 

variables (centered at the grand mean) as predictors of the intercept and of the linear, quadratic, 

and cubic manipulated human likeness terms, respectively. The mixed model equation is: 

( ) ( ) ( )2 3

00 0 0 10 1 1 20 2 2 30 3 3

2 3

01 11 21 31

2 3

02 12 22 32

γ γ γ γ

γ γ γ γ

γ γ γ γ ε

= + + + + + × + + + × + + + ×

+ × + × × + × × + × ×

+ × + × × + × × + × × +

tij i j i j tij i j tij i j tij

i i tij i tij i tij

i i tij i tij i tij tij

Eerie u v u v HL u v HL u v HL

RLS RLS HL RLS HL RLS HL

DFS DFS HL DFS HL DFS HL

 (6) 

where the fixed effects γ01 and γ02 represent the main effects of the PNS subscales (i.e., the 

change in eeriness of a stimulus that is at the midpoint of the human likeness continuum for a 

one-unit increase in one of the subscales, holding the other subscale constant). The fixed effects 

γ11, γ21, and γ31 represent the moderator terms for the first subscale (RLS), and the fixed effects 

γ12, γ22, and γ32 represent the moderator terms for the second subscale (DFS). In a separate model, 

subjective (instead of manipulated) human likeness was entered as a Level-1 predictor variable 

(again, centered at the person mean). In this model, the fixed effects have the same general 

meaning as in the model that included manipulated human likeness as the Level-1 predictor 

variable (the only difference is that the intercept represents the expected eeriness of a stimulus at 

the average level of subjective human likeness). Additionally, we analyzed all models with only 

one of the PNS subscales included as a predictor variable (instead of including both subscales 

simultaneously). This was done to scrutinize whether using the total variance of a PNS subscale 

as a predictor (vs. the unique variance that is not shared with the other subscale) leads to different 

results. 
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We analyzed the data with a mixed effects modelling approach in R (R Core Team, 2015) 

using the lmer() function from the lme4 package (Bates, Maechler, Bolker, & Walker, 2015). 

Degrees of freedom and p-values for the fixed effects were determined by applying the R-

package lmerTest (Kuznetsova, Brockhoff, & Christensen, 2015). 

3.2 Results 

3.2.1 Descriptive analyses. 

Descriptive statistics for all variables can be found in Table 1, and the correlations 

between the PNS scales (subscales, total scale) can be found in Table 3. To provide a descriptive 

overview of the variability in eeriness ratings among stimulus sets and participants, we generated 

boxplots for eeriness as a function of manipulated human likeness (i.e., the seven steps of the 

morphing continuum).  

Figure 5a depicts the by-stimulus set analysis and Figure 5b the by-participant analysis. 

As can be seen in both Figures 5a and 5b, on a descriptive level, the relationship between human 

likeness and eeriness was curvilinear, with stronger eeriness evoked by the midpoint than by the 

poles of the human likeness continuum. Figure 5a provides evidence of some amount of 

variability in eeriness ratings among stimulus sets (with larger variability across stimuli near the 

robot pole than near the human pole of the human likeness continuum). This suggests that a 

mixed effects model of these data should include a random effect (random intercept) for stimulus 

sets. Figure 5b demonstrates that the variability in eeriness ratings among participants was very 

large, suggesting that a random effect (random intercept) for participants should also be included 

in a mixed model for these data. Two-level null models (without predictor variables) with crossed 

random effects for participants and stimulus sets revealed that 19% of the variance in eeriness 

ratings was due to differences between participants, and 3% of the variance in eeriness ratings 

was due to differences between stimulus sets. 
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Next, we analyzed the subjective human likeness ratings as a function of manipulated 

human likeness (i.e., the seven steps of the morphing continuum). The subjective human likeness 

ratings increased in a monotonic fashion across the steps of the morphing continuum. The within-

persons correlation between manipulated human likeness and subjective human likeness was very 

large, r = .85 (p < .001). Two-level null models with crossed random effects for participants and 

stimulus sets revealed that 3% of the variance in the subjective human likeness ratings was due to 

differences between participants and 3% of the variance in subjective human likeness ratings was 

due to differences between stimulus sets. That is, systematic differences between participants 

were much smaller for the subjective human likeness ratings than for the eeriness ratings.  

3.2.2 Test of the functional form of the human likeness–eeriness relationship. 

Model comparisons revealed that in a mixed model predicting eeriness on Level 1 

(Judgments Level) by manipulated human likeness, crossed random intercept effects and crossed 

random effects for the linear and quadratic terms (but not for the cubic term) of human likeness 

had to be specified for participants and stimulus sets. As can be seen from the fixed part of Model 

1 in Table 4, the cubic human likeness term (γ30) was significant. This means that the average 

relationship between human likeness and eeriness could be described by a cubic function (i.e., a 

function with two bends). 

In Figures 6a and 6b, the shape of this (average) curvilinear relationship is depicted by a 

bold curve. Note that the cubic term determines the shape of the function within the range 

between −∞ and +∞. Only one bend in the curve is visible in the possible range of the (centered) 

human likeness continuum. This bend represents the expected uncanny valley. The second bend 

in the cubic function would be visible only if a larger range of positive values on the right were 

depicted. This might be interpreted as showing that for the humanlike pole of the x-axis, the 
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average eeriness ratings (asymptotically) approached the highest possible score (the “not at all 

eerie” category). As a measure of effect size, we calculated the proportional reduction in the 

Level-1 variance when human likeness (linear, quadratic, and cubic) was added to the model 

(quasi-R2 for Level 1; see e.g., Snijders & Bosker, 2012). It was .45—that is, compared with the 

null model, predicting eeriness with a cubic function for human likeness reduced the unexplained 

variance in eeriness ratings by 45% (which can be considered a large effect). Between-stimulus-

set differences (i.e., random effects across stimulus sets) are illustrated in Figure 6a, and between-

participant differences (i.e., random effects across participants) are illustrated in Figure 6b.  

When subjective human likeness was used as the Level-1 predictor variable (see Model 1 

in Table 5), the results were very similar to what we found for manipulated human likeness as the 

Level-1 predictor variable. Due to page restrictions, we decided not to include extra figures for 

the cubic relationship between subjective human likeness and eeriness.  

3.2.3 Moderator effects of Personal Need for Structure subscales. 

To test whether the two PNS subscales (DFS and RLS) would predict individual 

differences in uncanny valley sensitivity, we first entered both PNS subscales as person-level 

predictors in the model with manipulated human likeness as the Level-1 predictor variable. As 

can be seen in Model 2 in Table 4, the two subscales demonstrated both main effects (i.e., 

predicting the varying intercept term) and interaction effects (predicting the linear and quadratic 

terms of manipulated human likeness). It is important to note that these effects had different 

signs: RLS negatively predicted the intercept term, and DFS positively predicted the intercept 

term. Inverse regression coefficients were also found for the prediction of the quadratic term of 

manipulated human likeness.3 To gain more insight into the form these main and interaction 

effects took, we plotted the predicted curves for individuals with low (M – 1 SD), medium (M), 

and high (M + 1 SD) RLS scores (see Figure 7a) as well as for individuals with low (M – 1 SD), 
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medium (M), and high (M + 1 SD) DFS scores (see Figure 7b). As expected, the uncanny valley 

was more pronounced (steeper) for individuals high on RLS than for individuals low on RLS. For 

DFS, the pattern was reversed: The uncanny valley was more pronounced for individuals low on 

DFS than for individuals high on DFS. When only RLS was included as a person-level predictor 

(see Table 4, Model 3), the direction of the effects remained the same, but the regression 

coefficients were somewhat smaller than in the simultaneous analysis. The main effect of RLS 

and the linear interaction effect remained significant, and additionally, the cubic interaction term 

reached significance. That is, the form of the moderator effect of RLS on uncanny valley 

sensitivity remained very similar. When only DFS was included (see Table 4, Model 4), the main 

and the interaction effect terms were no longer significant.   

When the PNS subscales were entered as person-level predictors in the model that 

included subjective (instead of manipulated) human likeness as the Level-1 predictor variable, the 

overall pattern of results was similar (see Table 5, Model 2): The main effects of the PNS 

subscales were again significant and opposite in sign. That is, for individuals high on RLS, the 

stimuli of perceived android quality evoked more eeriness (larger negative predicted scores) than 

for individuals low on RLS, and the opposite pattern held for individual differences in the DFS 

facet. However, with the exception of the interaction between DFS and the quadratic term, which 

was significant, the other interaction effects were somewhat smaller than in the corresponding 

Model 2 in Table 4 and did not reach the .05 level of significance (p < .10). Because the 

significant main effects and the significant interaction effect were similar to the results found for 

manipulated human likeness, we refrained from including separate plots for subjective human 

likeness. When either RLS or DFS were included as a predictor (see Table 5, Models 3 and 4), 

the direction of the effects again remained the same, and the regression coefficients were smaller 

than in the simultaneous analysis. For RLS, the main effect and the quadratic interaction effect 
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missed the .05 level of significance (p < .10). For DFS, only the quadratic interaction term 

remained significant.  

3.3 Discussion 

We found a cubic relationship between robots’ human likeness and participants’ eeriness 

ratings. However, only one bend in the estimated curve—representing the uncanny valley—was 

located in the possible range of the human likeness continuum. The second bend in the estimated 

curve would be visible only if a larger range of positive values on the right were present. This 

suggests that for the human endpoint of the x-axis, average eeriness ratings approached minimum 

eeriness. Our results fit the uncanny valley proper (cf. Kätsyri et al., 2015), but the left hand 

upward slope of Mori’s graph was omitted (see Moore, 2012, and Yamada et al., 2013, for 

similar findings). Moreover, the point of maximum eeriness was closer to the robot endpoint of 

the continuum than to the human endpoint. Both findings are likely due to the fact that the 

examples used as the robot endpoints of the morphing continua were already moderately 

humanlike. They showed substantial human features and proportions (which facilitated the 

morphing process and reduced potential artifacts).  

The observed main and interaction effects of the RLS subscale point out that the uncanny 

valley was similar in shape but more pronounced for high RLS participants, and it was similar in 

shape but less pronounced for low RLS participants. We found evidence for the hypothesized 

moderator effect of RLS when we used manipulated human likeness (i.e., steps of the morphing 

continuum) to model the uncanny valley phenomenon. When we used subjective human likeness 

ratings to model the uncanny valley phenomenon, a similar moderator effect of RLS emerged, 

but the empirical evidence was weaker. This might be due to the fact that subjective human 

likeness ratings (although highly correlated with manipulated human likeness) introduce more 
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random variance into the uncanny valley part of the model, which might make it more difficult to 

detect a moderator effect of RLS on the shape of the human likeness–eeriness link.  

It is interesting that the moderator effect of RLS took the same form but was larger when 

the second PNS subscale (DFS) was controlled. That is, the unique variance of RLS, in 

particular, contributed to the prediction of individual differences in uncanny valley sensitivity. 

According to Neuberg and Newsom (1993), a general preference for simple (as opposed to 

complex) structures represents the shared variance of the RLS and DFS subdimensions, and the 

tendency to react negatively to the absence of structure represents the unique aspect of RLS. 

Previous research has revealed that RLS (but not DFS) is associated with negative trait affectivity 

and sensitivity to the negative emotional qualities of stimuli (Cavazos et al., 2012). Moreover, 

Elovaino and Kivimäki (1999) have shown that RLS (but not DFS) is associated with higher 

occupational strain among individuals working in occupations with high complexity. Our 

findings provide first evidence that being confronted with humanlike robots elicits individual 

differences in eeriness (i.e., a specific type of negative affective response) which are related to 

individual differences in RLS. Hence, our finding is in line with previous research on the 

discriminant validity of the PNS subdimensions. Unexpectedly, we found some evidence for an 

inverse moderator effect of DFS when RLS was controlled. Given that we had not formulated a 

moderator hypothesis for the DFS subdimension, we would prefer to treat this as an exploratory 

finding which warrants further investigation. 

Taken together, the findings of Experiment 2 indicate that the valley-like form of the 

relationship between robots’ human likeness and individuals’ eeriness held for all participants. 

We found some evidence that the deepest point in the valley varied with individuals’ tendency to 

respond negatively to a lack of structure. 
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4. General Discussion 

4.1 Contribution  

The uncanny valley hypothesis (Mori, 1970 / Mori, MacDorman, & Kageki, 2012), which 

suggests a nonlinear relationship between human likeness and eeriness, has received substantial 

attention from scholars, the popular media, as well as the general public, but evidence for its mere 

existence, let alone for its predictors and the underlying mechanisms, is far from established. In 

previous research, the reactions towards humanlike robots have been attributed almost 

exclusively to the robot’s design, including its nonverbal behavior (Mara & Appel, 2015a) and 

the fit between visual appearance and movement (Saygin et al., 2012). From a psychological 

standpoint, such an approach is insufficient. Individuals differ in their responses to given robotic 

stimuli, and largely ignoring these differences is a substantial shortcoming of the field. Not only 

does this practice obfuscate the phenomenon conceptually and empirically, it can lead to biased 

estimates of the stimulus effects (Judd et al., 2012). On the basis of current theories about the 

psychological mechanisms underlying the uncanny valley effect, we examined whether the 

personality trait need for structure (Neuberg & Newsom, 1993) could explain individual 

differences in eeriness responses. Our work is the first set of experiments to be based on a mixed 

effects rationale with a focus on nonlinear functions. This allowed us to examine the relationship 

between human likeness and eeriness without collapsing eeriness ratings across participants and 

to examine individual differences in uncanny valley sensitivity without having to collapse 

eeriness ratings across stimuli (as has been done in previous research). It is important to note that 

the nonlinear mixed effects approach allowed us to model individual differences in the functional 

form of the relationship between human likeness and eeriness and to test whether individual 

differences in the need for structure would predict these functional differences in the uncanny 

valley experience. 
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The results of our statistical analyses supported the uncanny valley hypothesis. We found 

that an android elicited stronger feelings of eeriness than a moderately humanlike robot or a 

human (Experiment 1) and that along the continuum between a moderately humanlike robot and 

a human being, the relationship between human likeness and eeriness followed a cubic function 

(Experiment 2). Moreover, the findings of both experiments showed that individuals differed 

substantially in their eeriness reactions, a finding that underscores the need to acknowledge this 

previously largely neglected source of variance in future analyses of the uncanny valley phenomenon.  

As demonstrated in Experiment 2, individual differences in the functional form of the 

uncanny valley experience could be predicted by a subdimension of the need for structure: 

Individuals who tend to react negatively whenever structure is disrupted (Response to Lack of 

Structure [RLS]; Neuberg & Newsom, 1993) had stronger negative reactions to the ambiguous 

stimuli. This disposition was related to more intense uncanny feelings and a more pronounced 

uncanny valley effect. It is important to note that the second subdimension of need for structure, 

Desire for Structure (DFS), did not show a similar moderator effect in Experiment 2. When RLS 

was controlled, DFS even predicted less eeriness in response to android stimuli. However, given 

the unexpectedness of this result, the role of DFS in eeriness experiences should be scrutinized in 

future research. Nonetheless, the findings of Experiment 2 underscore the importance of 

distinguishing between the two subcomponents of the need for structure (Cavazos et al., 2012; 

Neuberg & Newsom, 1993), which might substantially increase the predictive power of this trait. 

It needs to be emphasized that the predictive power of RLS in Experiment 2 was more 

pronounced for the reactions to the android stimuli (at the bottom of the uncanny valley, near the 

midpoint of the selected morphing continuum) than for the reactions to the more clear-cut robot 

or human stimuli (at the endpoints of the selected morphing continuum). The observed effects 

build upon and expand previous results on bivariate relations between personality traits and 
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eeriness ratings (MacDorman & Entezari, 2015). In general, bivariate relations with “uncanny 

valley sensitivity” might simply reflect a tendency to respond with eeriness to all kinds of stimuli, 

including nonhumanlike robots and humans. Although MacDorman and Entezari (2015) reported 

personality correlates of eeriness ratings for one class of stimuli (androids) only, they noted (in a 

footnote) that for eeriness ratings of nonandroids, only a few relations with personality variables 

were significant. By analyzing a larger spectrum of the human likeness continuum simultaneously, 

we were able to show that RLS predicted eeriness responses to a larger degree near the middle of 

our human likeness continuum than at the endpoints of the continuum, thereby ruling out a simple 

“eeriness-proneness” explanation.  

Although our hypothesis on the association between RLS and uncanny valley sensitivity 

was confirmed in Experiment 2, we did not find evidence for this hypothesis in Experiment 1. 

Hence, the moderator effect of RLS in Experiment 2 requires cautious interpretation and awaits 

replication in future research. We can only speculate about reasons why the two experiments did 

not yield converging evidence on the role of RLS: First, Experiment 2 used a fine-grained (seven-

step) manipulation of human likeness, but Experiment 1 used a rather coarse (three-step) 

manipulation of human likeness (only one selected morphed stimulus plus the endpoints of the 

continuum). This might be interpreted to point out the importance of selecting a broad spectrum 

of stimuli when analyzing individual differences in the uncanny valley experience. Second, in 

Experiment 2, the relation between RLS and eeriness responses was most pronounced for stimuli 

that were located somewhat closer to the robot endpoint of the human likeness continuum than to 

the human endpoint of the continuum (see Figure 7a). However, the morphed stimuli selected for 

the android category in Experiment 1 were located at the midpoint of the human likeness 

continuum. That is, android stimuli in Experiment 1 contained a larger proportion of human 

features than those stimuli in Experiment 2 that evoked the largest personality-consistent 
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individual differences in eeriness responses. 

4.2 Limitations and Future Research 

Using elaborate statistical methods, we found support for the uncanny valley hypothesis. 

Our goal had not been to rule out a specific theory on the psychological mechanisms underlying 

the uncanny valley effect or to compare different theories and decide whether the data supported 

one or the other. Our research provides tentative evidence for the importance of individual 

differences in the need for structure in the formation of the uncanny valley experience. Thus, our 

results are in line with category uncertainty theory and the expectancy violation approach as well 

as with a terror management account (MacDorman, 2005; Landau et al., 2004), or the meaning 

violation framework (Mara & Appel, 2015b; Heine, Proulx, & Vohs, 2006)—theories and models 

with a great deal of overlap (Proulx, Inzlicht, & Harmon-Jones, 2012). 

Our decision to examine the need for structure as the individual difference variable was 

guided by current theories on the psychological origins of the uncanny valley phenomenon. Other 

personality variables might qualify for theory-guided hypotheses as well (cf. MacDorman & 

Entezari, 2015). One such personality variable could be the need for affect (Maio & Esses, 2001), 

which is related to a particular sensitivity to the warm/cold dimension in person perception 

(Aquino, Haddock, Maio, Wolf, & Alparone, 2016), a dimension that is closely connected to the 

uncanny valley experience. Regarding individual differences beyond the realm of personality, 

cultural context has received surprisingly little attention in research on the uncanny valley. 

Anecdotal evidence suggests that Asian—and especially Japanese—people are more accepting of 

humanlike robots than persons socialized in other parts of the world. Future research should 

investigate whether the sensitivity to humanlike robots is indeed influenced by cultural factors.   

Like much of the research on the uncanny valley, we used images that represented a 

morphing continuum from robot to human (cf. Burleigh et al., 2013; Hansen, 2006; MacDorman 
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& Ishiguru, 2006; MacDorman et al., 2009; Yamada et al., 2013) as our stimulus material. We 

acknowledge that morphing artifacts can reduce the validity of this method. We reduced 

morphing artifacts during stimulus generation; thus, we have reason to believe that our effects did 

not depend on this methodological shortcoming. An alternative approach is the use of images of 

existing (humanlike) robots as stimuli. Although this approach would have increased the study’s 

external validity, the choice of the robots is crucial to the method and could determine the results: 

Whereas one recent study based on this approach found evidence for an uncanny-valley-like 

function between human likeness and eeriness (Mathur & Reichling, 2015), others found no such 

evidence (Rosenthal-von der Pütten & Krämer, 2014). As humanlike robots become more and 

more available to researchers, we envisage that more experimental studies will examine real-life 

human-robot interactions, a setting that has rarely been used in theory-guided experimental 

research with substantial sample sizes (for an exception, see e.g., Mara & Appel, 2015b). 

4.3 Conclusion 

Feelings of eeriness in response to robots are traditionally conceived of as a function of 

the robotic stimulus alone. This perspective is incomplete and potentially erroneous from a 

statistical perspective (e.g., Judd et al., 2012). Using a nonlinear mixed effects approach, we 

showed that the uncanny valley is a reliable phenomenon. Differences between individuals were 

nonetheless substantial. In one of two experiments, we found support for the hypothesis that 

individuals who react more negatively to a lack of structure (Neuberg & Newsom, 1993) 

demonstrate higher uncanny valley sensitivity. Replication studies might profit from augmenting 

the stimulus set to enhance power (Westfall, Kenny, & Judd, 2014). Future research on the 

uncanny valley phenomenon should account for both person and contextual factors when 

investigating user responses to (humanlike) robots. 
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Footnotes 

1 For nested (noncrossed) two-level data, Geldhof et al. (2014) suggested calculating between-

persons alpha across all repeated measures, using a two-level multilevel model (i.e., judgments 

nested in persons). However, on the between-persons level, this method was not applicable to the 

data from Experiment 1 because each person saw a different, fixed subset that included three out 

of nine stimuli, and the stimuli differed systematically in eeriness and human likeness. Therefore, 

we calculated (between-persons) Cronbach’s alphas separately for each of the nine stimuli. 

2 To account for systematic variation between stimulus sets in Experiment 2, we included a 

random effect for both persons and stimulus sets in this model. That is, instead of a two-level 

model for nested data as in Geldhof et al.’s (2014) examples, a cross-classified model (with 

participants and stimulus sets as crossed random effects) was specified to estimate the variance 

components and calculate alpha on the judgments level and on the between-persons level. 

3 As a measure of effect size, we calculated the proportional reduction in the Level-2 variances of 

random effects across participants (i.e., the proportional reduction in the variances of u0i, u1i, and 

u2i) when the PNS subscales were added to the model (quasi-R2 for Level 2; see e.g., Snijders & 

Bosker, 2012). The proportional reduction in variance of the intercept was .04, the proportional 

reduction in variance of the linear slope term for human likeness was .001, and the proportional 

reduction in variance of the quadratic slope term for human likeness was .06. 
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Table 1 

Descriptive Statistics for the Study Variables in Experiment 1 and Experiment 2 

Variable Experiment 1  Experiment 2 

 M SD  M SD 

Eeriness  −4.11 1.74  −3.50 2.00 

Subjective HL   3.46 2.09    3.75 2.23 

PNS total scale   3.70 0.63    3.78 0.73 

PNS-DFS   3.99 0.77    4.03 0.93 

PNS-RLS   3.53 0.71    3.63 0.77 

Extraversion   3.63 0.64  — — 

Neuroticism   2.64 0.62  — — 

Note. HL = Human likeness. PNS = Personal Need for Structure. PNS-DFS = PNS subscale 

Desire for Structure. PNS-RLS = PNS subscale Response to Lack of Structure. Eeriness is the 

transformed eeriness variable (possible range from −7 to −1, with lower [i.e., larger negative] 

scores representing greater eeriness). 
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Table 2 

Results of Multivariate Multilevel Models Predicting Eeriness in Experiment 1 

 Fixed  Random 
(participants) 

 Coef. Est. SE z  Coef. SD 

Model 0        
Dum.Robot γ10 −4.00 0.10   u1i 1.51 
Dum.Android γ20 −5.51 0.08   u2i 1.15 
Dum.Human γ30 −2.83 0.09   u3i 1.38 
Model 1        
Intercept γ00 −5.51 0.08   u0i 1.15 
Dum.Robot γ10 1.51 0.13  11.99***  u1i 1.89 
Dum.Human γ20 2.68 0.11  23.61***  u2i 1.71 
Model 2        
Intercept γ00 −5.50 0.08   u0i 1.13 
Dum.Robot γ10 1.46 0.11  13.15***  u1i 1.67 
Dum.Human γ20 2.65 0.10  27.32***  u2i 1.46 
Eff.Set2 γ30 −0.29 0.10 −2.80**    
Eff.Set3 γ40 0.30 0.11   2.84**    
Dum.Robot ×Eff.Set2 γ50 0.53 0.17   3.10**    
Dum.Robot ×Eff.Set3 γ60 0.40 0.17   2.37*    
Dum.Human × Eff.Set2  γ70 −0.16 0.16 −0.98    
Dum.Human × Eff.Set3 γ80 −0.86 0.16 −5.32***    
Model 3        
Intercept γ00 −5.50 0.08   u0i 1.13 
Dum.Robot γ10 1.46 0.11  13.15***  u1i 1.67 
Dum.Human γ20 2.65 0.10  27.36***  u2i 1.45 
Eff.Set2 γ30 −0.29 0.11 −2.76**    
Eff.Set3 γ40 0.30 0.11   2.82**    
Dum.Robot ×Eff.Set2 γ50 0.52 0.17   3.06**    
Dum.Robot ×Eff.Set3 γ60 0.40 0.17   2.37*    
Dum.Human × Eff.Set2  γ70 −0.17 0.16 −1.05    
Dum.Human × Eff.Set3 γ80 −0.85 0.16 −5.25***    
RLS γ01 −0.11 0.12 −0.94    
DFS γ02 0.06 0.11   0.57    
Dum.Robot × RLS γ11 0.02 0.18   0.12    
Dum.Robot × DFS γ12 −0.06 0.17 −0.34    
Dum.Human × RLS γ21 −0.04 0.16 −0.28    
Dum.Human × DFS γ22 −0.08 0.14 −0.56    

Note. Analyses were conducted in Mplus (which reports z values as the test statistic). For Model 

0 (i.e., the baseline model), we do not report z statistics because they would be meaningless (test 

of the null hypothesis that mean eeriness of a stimulus is zero in the population). In Models 1 to 
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3, the reference category was the android stimulus. Coef. = Coefficient from model equations in 

the text. Dum.Robot = Dummy variable for robot stimulus. Dum.Android = Dummy variable for 

android stimulus. Dum.Human = Dummy variable for human stimulus. Eff.Set2 = Effect-coded 

indicator variable for stimulus set 2. Eff.Set3 = Effect-coded indicator variable for stimulus set 3. 

RLS = Response to Lack of Structure. DFS = Desire for Structure.  

* p < .05. ** p < .01. *** p < .001. 
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Table 3 

Correlations between Personality Variables in Experiments 1 and 2 

 1 2 3 4 5 

1. PNS total scale  .82*** .92*** — — 

2. PNS-DFS .78***  .52*** — — 

3. PNS-RLS .92*** .48***  — — 

4. Extraversion −.30*** −.07 −.38***  — 

5. Neuroticism .37*** .13 .43*** −.29***  

Note. PNS = Personal Need for Structure. PNS-DFS = PNS subscale Desire for Structure. PNS-

RLS = PNS subscale Response to Lack of Structure. Correlations between variables in 

Experiment 1 are depicted below the diagonal, and correlations between variables in Experiment 

2 are depicted above the diagonal. N persons (Experiment 1) = 226. N persons (Experiment 2) = 

316.  

*** p < .001.  
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Table 4 

Results of Mixed Model Analyses Predicting Eeriness by Manipulated Human Likeness in 

Experiment 2 

 Fixed  Random 
       Participants  Stimulus sets 
 Coef. Est. SE t df  Coef. SD  Coef. SD 

Model 1            
Intercept γ00 −4.34     u0i 1.07  v0j 0.24 
Manip. HL γ10   0.46 0.07   6.15*** 8  u1i 0.24  v1j 0.20 
Manip. HL2 γ20   0.21 0.02   8.55*** 7  u2i 0.08  v2j 0.07 
Manip. HL3 γ30 −0.02 0.00 −8.99*** 7,878       
Model 2            
Intercept γ00 −4.34     u0i 1.05  v0j 0.24 
Manip. HL γ10 0.46 0.07   6.15*** 8  u1i 0.24  v1j 0.20 
Manip. HL2 γ20 0.21 0.02   8.56*** 7  u2i 0.08  v2j 0.07 
Manip. HL3 γ30 −0.02 0.00 −9.00*** 7,876       
RLS γ01 −0.32 0.10 −3.33*** 313       
DFS γ02 0.21 0.08   2.75** 313       
Manip. HL× RLS γ11 0.08 0.04   2.21* 1,600       
Manip. HL2 × RLS γ21 0.03 0.01   2.87** 313       
Manip. HL3 × RLS γ31 −0.00 0.00 −1.60 7,878       
Manip. HL × DFS γ12 −0.01 0.03 −0.37 1,598       
Manip. HL2 × DFS γ22 −0.02 0.01 −3.14** 313       
Manip. HL3 × DFS γ32 −0.00 0.00 −0.36 7,875       
Model 3            
Intercept γ00 −4.34     u0i 1.06  v0j 0.24 
Manip. HL γ10 0.46 0.07   6.15*** 8  u1i 0.24  v1j 0.20 
Manip. HL2 γ20 0.21 0.02   8.55*** 7  u2i 0.08  v2j 0.07 
Manip. HL3 γ30 −0.02 0.00 −9.00*** 7,877       
RLS γ01 −0.18 0.08 −2.19* 314       
Manip. HL× RLS γ11 0.07 0.03   2.36* 1,605       
Manip. HL2 × RLS γ21 0.01 0.01   1.42 314       
Manip. HL3 × RLS γ31 −0.01 0.00 −2.10* 7,879       
Model 4            
Intercept γ00 −4.34     u0i 1.06  v0j 0.24 
Manip. HL γ10 0.46 0.07   6.15*** 8  u1i 0.24  v1j 0.20 
Manip. HL2 γ20 0.21 0.02   8.55*** 7  u2i 0.08  v2j 0.07 
Manip. HL3 γ30 −0.02 0.00 −9.00*** 7,877       
DFS γ01 0.08 0.07   1.17 314       
Manip. HL× DFS γ11 0.02 0.03   0.91 1,597       
Manip. HL2 × DFS γ21 −0.01 0.01 −1.90+ 314       
Manip. HL3 × DFS γ31 −0.00 0.00 −1.41 7,877       
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Note. Mixed model analyses were computed in R (using the packages lme4 and lmerTest). Coef. 

= Coefficient from model equations in the text. Manip. HL = Manipulated human likeness (steps 

of the morphing continuum). RLS = Response to Lack of Structure. DFS = Desire for Structure. 
+
 p < .10. * p < .05. ** p < .01. *** p < .001.  

 

  



UNCANNY VALLEY  57 

Table 5 

Results of Mixed Model Analyses Predicting Eeriness by Subjective Human Likeness in 

Experiment 2 

 Fixed  Random 
       Participants  Stimulus sets 
 Coef. Est. SE t df  Coef. SD  Coef. SD 

Model 1            
Intercept γ00 −4.27     u0i 1.06  v0j 0.33 
Subj. HL γ10 0.39 0.06   6.46*** 10  u1i 0.28  v1j 0.16 
Subj. HL2 γ20 0.17 0.01 12.75*** 12  u2i 0.10  v2j 0.03 
Subj. HL3 γ30 −0.02 0.00 −5.96*** 3,102       
Model 2            
Intercept γ00 −4.27     u0i 1.05  v0j 0.33 
Subj. HL γ10 0.40 0.06   6.48*** 10  u1i 0.28  v1j 0.16 
Subj. HL2 γ20 0.17 0.01 12.83*** 11  u2i 0.10  v2j 0.03 
Subj. HL3 γ30 −0.02 0.00 −6.10*** 3,117       
RLS γ01 −0.29 0.10 −3.02** 300       
DFS γ02 0.24 0.08   2.97** 302       
Subj. HL × RLS γ11 0.07 0.04   1.83+ 1,183       
Subj. HL2 × RLS γ21 0.02 0.01   1.79+ 342       
Subj. HL3 × RLS γ31 −0.01 0.00 −1.71+ 3,466       
Subj. HL × DFS γ12 −0.02 0.03 −0.69 1,172       
Subj. HL2 × DFS γ22 −0.03 0.01 −3.00** 341       
Subj. HL3 × DFS γ32 0.01 0.00   1.79+ 3,283       
Model 3            
Intercept γ00 −4.27     u0i 1.06  v0j 0.33 
Subj. HL γ10 0.40 0.06   6.47*** 10  u1i 0.28  v1j 0.16 
Subj. HL2 γ20 0.17 0.01 12.75*** 12  u2i 0.10  v2j 0.03 
Subj. HL3 γ30 −0.02 0.00 −5.98*** 3,079       
RLS γ01 −0.14 0.08 −1.73+ 304       
Subj. HL× RLS γ11 0.06 0.03   1.72+ 1,208       
Subj. HL2 × RLS γ21 0.00 0.01   0.28 344       
Subj. HL3 × RLS γ31 −0.00 0.00 −0.92 3,447       
Model 4            
Intercept γ00 −4.27     u0i 1.06  v0j 0.33 
Subj. HL γ10 0.40 0.06   6.48*** 10  u1i 0.28  v1j 0.16 
Subj. HL2 γ20 0.17 0.01 12.82*** 12  u2i 0.10  v2j 0.03 
Subj. HL3 γ30 −0.02 0.00 −6.07*** 3,100       
DFS γ01 0.11 0.07   1.63 307       
Subj. HL× DFS γ11 0.01 0.03   0.30 1,199       
Subj. HL2 × DFS γ21 −0.02 0.01 −2.44* 340       
Subj. HL3 × DFS γ31 0.00 0.00   1.04 3,255       
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Note. Mixed model analyses were computed in R (using the packages lme4 and lmerTest). Coef. 

= Coefficient from model equations in the text. Subj. HL = Subjective human likeness ratings. 

RLS = Response to Lack of Structure. DFS = Desire for Structure. 
+
 p < .10. * p < .05. ** p < .01. *** p < .001.  
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Figure 1. The nonlinear relationship between the human likeness of stimuli and users’ affinity. 

The uncanny valley proper is emphasized with a grey color. Adapted from MacDorman (2005). 
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Figure 2. Stimuli used in Experiment 1 (three degrees of human likeness for three stimulus sets). 

The robot images (from top to bottom row) show the robots called Aila (DFKI Robotics 

Innovation Center), Bandit (USC Interaction Lab and BlueSky Robotics), and Roboy (AI Lab, 

University of Zurich), taken from the IEEE robot collection (Institute of Electrical and Electronic 

Engineers, 2012). The photo of Bandit is not depicted because we were not able to obtain the 

permission to reprint the photo. The photo can be found at http://robotsapp.spectrum.ieee.org. 

The female human image depicts the actress Keira Knightley and was retrieved via a Google 

Image search. The male human images were taken from the Karolinska Directed Emotional Faces 

database (Lundqvist et al., 1998; image IDs AM10NES, BM09NES). 
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Figure 3. Eeriness as a function of manipulated human likeness in Experiment 1: a) By-stimulus 

set analyses (mean eeriness ratings for each of the three stimulus sets averaged across 

participants, with stimulus set number placed next to each mean); b) By-participant analysis 

(eeriness ratings of each participant). 
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Figure 4. Stimuli used in Experiment 2. Rows represent the eight stimulus sets, columns 

represent the seven steps of the morphing continuum from robot (left) to human (right). The robot 

images (left column, from top to bottom row) show the robots Aila (DFKI Robotics Innovation 

Center), Flobi (University of Bielefeld, Germany), iCub (RoboCub Consortium, Bar Ilan 
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University, Israel), Roboy (AI Lab, University of Zurich, Switzerland), Roman (Robotics 

Research Lab, University of Kaiserslautern, Germany), Telenoid™ (Ishiguro Lab at Osaka 

University, Japan), and RoboThespain (Engineered Arts Ltd, United Kingdom). Telenoid™ has 

been developed by Osaka University and Hiroshi Ishiguro Laboratories, Advanced 

Telecommunications Research Institute International (ATR). The male human images were 

selected from the Karolinska Directed Emotional Faces database (Lundqvist et al, 1998; image 

IDs AM10NES, AM18NES, BM09NES, AM30NES, BM25NES, AM31NES), and the two 

female images were extracted from a Google-Image search. The eighth stimulus set is not 

depicted. It consisted of an image of the robot Bandit (USC Interaction Lab and BlueSky 

Robotics), a male human image from the KDEF (ID AM10NES) and five morphs. The reason for 

not depicting this stimulus set is that we were not able to obtain the permission to reprint the 

photo of robot Bandit. It can be found at http://robotsapp.spectrum.ieee.org. 
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Figure 5. Eeriness as a function of manipulated human likeness (steps of the morphing 

continuum) in Experiment 2: a) By-stimulus set analyses (eeriness ratings for each stimulus set 

averaged across participants); b) By-participant analysis (eeriness ratings of each participant 

averaged across stimuli). 
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Figure 6. Curvilinear relationship between manipulated human likeness (centered at the midpoint 

of the continuum) and eeriness as estimated from the mixed model in Experiment 2: a) Stimulus-

set-specific curves (depicting random effects across stimulus sets) and the average curve (across 

participants and stimulus sets) in bold; b) participant-specific curves (depicting random effects 

across participants) and the average curve (across participants and stimulus sets) in bold grey. 
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Figure 7. PNS subscales as moderators of the relationship between manipulated human likeness 

and eeriness as estimated from the mixed model (Model 2 in Table 4) in Experiment 2: a) 

Moderator effect of PNS subscale Response to Lack of Structure (RLS); b) Moderator effect of 

PNS subscale Desire for Structure (DFS). 

 


